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Abstract 
 

Investigation of peer effects on pupil’s achievement with survey data on samples of schools and 

pupils within schools may mean that only a random sample of peers is observed for each individual 

pupil. This generates classical measurement error on peer variables. Hence under OLS model fitting 

the estimated peer group effects in a regression model are biased towards zero (attenuation). A 

simple adjustment for this kind of measurement error was proposed by Neidell and Waldfogel 

(2008). We review the derivation of the simple adjustment and suggest that it is not properly 

justified. 
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When peer effects are estimated in regression models with survey data that contain only a 

sample of each individual’s peers, the estimates which are obtained can be expected to be 

biased. If the sample of peers is drawn randomly, as often occurs in surveys of school 

children, for example, the survey design leads to measurement error in the peer variables that 

is close (but not identical) to the classical textbook form, leading to attenuation bias. The 

problem has been recognised by Ammermüller and Pischke (2006, 2009) and subsequently by 

Waldfogel and Neidell (2008, 2010).
4
 

In this note we consider these authors’ proposal for a simple adjustment to the OLS 

estimator of the peer effects coefficient. We limit ourselves to discussing the presentation in 

Neidell and Waldfogel (2008) (NW from now on); see their equation (2) and their appendix 

which focuses on this issue. Their proposed adjustment follows work by Ammermueller and 

Pischke (2006, 2009) who consider in addition various other sources of measurement error 

which we are not concerned with here. 

The original model considered by NW is given by: 

1
0 1 2 3 4 5

t t
icd icd icd icd icd cd icd d cd icdy w W y               β x β X β z  (1) 

where t
icdy  denotes the outcome in kindergarten for child i in class c of school d;  

icdw  is the indicator that the child was enrolled in pre-school; 

1( 1)
cd

icd cd jcdj U i
W N w

 
    is the average of the enrolment indicator for the 

population of peers in the class (i.e. excluding child i);  

Ucd is the set of children and Ncd is the number of children in the class; 

icdx  is a vector of individual and family level characteristics of the child; 

1( 1)
cd

icd cd jcdj U i
N 

 
  X x  is the vector of peer population means in the class; 

                                                           
4
 In a companion paper (Micklewright, Schnepf, and Silva 2012), we investigate the size of the attenuation bias 

in a particular setting by comparing estimates obtained when peer measures are calculated with the survey 
sample with those obtained with data on the population from which the sample was drawn. A parallel 
literature in statistics is concerned with estimates from multilevel models applied to survey data with a 
hierarchical structure when measures of variables at a higher level are formed by averaging the characteristics 
of units at a lower level (Woodhouse et al 1996, Kravdal 2006).  
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cdz  is a vector of teacher and classroom level characteristics; and 

1t
icdy   is the outcome for the child measured at a previous time point before exposure to 

the peer environment for which estimated effects are required.  

In the model (1) the beta coefficients and the school intercepts d  are all assumed 

fixed, but the classroom effects cd  and the individual ‘idiosyncratic’ terms icd  are 

considered random, with mean zero and unspecified but fixed variances 2
  and 2

 . The key 

parameter of interest is 1 , namely the peer effect.  

The model (1) is formulated using population averages for the peers, but only a 

sample of pupils in each class is available to fit the model. Therefore some of the covariates 

are ‘measured with error’, namely the sampling error of estimating the class peer averages 

from a sample of peers in each class. In the appendix of their paper, NW adopt a largely 

simplified model given by 

1
t
icd icd icdy W           (2) 

This is likely to be too simple a model for any application, but nevertheless was the 

model assumed by NW when developing their simple measurement error adjustment factor in 

their appendix. NW refer to the model with fixed school effects considered by Ammermueller 

and Pischke (2006) which is similar to their main model described by (1), but then in a 

footnote they confirm that their development is based on the simpler ‘bivariate regression’ 

model (2). 

In the scenario considered by NW, the data available to fit the model (2) are 

observations made for a sample of peers in each class, and therefore icdW  is not known. 

Instead it is replaced by the sample average of peers 
1( 1)

cd
icd cd jcdj s i

w n w
 

   , where 

scd is the sample of children and ncd is the number of children in the sample of the class.
5
 

Despite the fact that the model (2) refers to three levels (pupils, classes and schools), the 

                                                           
5 A quick comment about notation is due here. NW label their population and sample peer effect 

variables as cdw  and 
*
cdw , respectively, dropping the child’s index. However, these variables vary with the 

children in each class, and therefore the child’s index i should not be removed. 
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model structure only recognises two of these levels, since peers are defined within each class 

and no explicit structure is imposed to capture the school effects.  

Let 1,
ˆ

OLS  denote the OLS estimator of 1 under (2), but calculated from the 

available sample data, namely: 

1, 2

( )( ) cov( , )ˆ
var( )( )

icd icdicd icd icd
OLS

icdicdicd

y y w w y w

ww w


 
 






      (3) 

where y  and w  are the overall sample averages of the response and the peer effects 

variables, respectively. 

NW then state that the OLS estimate of 1 converges to: 

1,

1

1

( , )ˆplim
( )

( , )

( )

( , ) ( , )

( ) ( )

icd icd
OLS

icd

icd icd icd

icd

icd icd icd icd

icd icd

COV y w

VAR w

COV W w

VAR w

COV W w COV w

VAR w VAR w



 









 

   (4) 

Now let’s explore (4). NW drop the second term on the right hand side of the last 

expression. Indeed a standard (though unspecified) assumption of the model (2) is that 

( , ) 0icd icdCOV W   , namely that the model errors ( icd ) are uncorrelated with the true peer 

covariate ( icdW ). 

However the term dropped from (4) is the covariance between the model errors ( icd ) 

and the sample average peer effects ( icdw ), i.e. the peer covariate measured with error. This 

will be zero only under the additional assumption that the measurement errors ( )icd icdw W  

are uncorrelated with the true measurements ( )icdW , namely ( , ) 0icd icd icdCOV w W W  , 

and with the model errors ( icd ), namely ( , ) 0icd icd icdCOV w W   , assumptions generally 

required by the classical measurement error model specification – see for example Fuller 

(1987, eq. 1.1.3). However NW make none of these assumptions explicitly. In fact in our own 

empirical work using data from the Programme for International Student Assessment (PISA) , 
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we estimated the correlation ( , )icd icd icdCORR w W W  as -0.18 (significantly different from 

zero using a 0.1 percent significance level) – see (Micklewright, Schnepf and Silva 2012). 

The classical measurement error model would also require the assumption that the 

vectors ( , , )icd icd icd icdW w W   are independent across different individuals. Now the 

assumption that both the population and sample averages of peers are uncorrelated across 

pupils from different schools is easily justified, but the same does not apply if pupils belong 

to the same school.  

NW then derive the variance which appears in the denominator of the terms on the 

right hand side of (4) as: 

 

1

2

2

1

( ) ( 1)

( 1)

( 1) ( )

( 1) ( )

cd

cd

cd

icd cd jcdj s i

cd jcdj s i

cd jcdj s i

cd jcd

VAR w VAR n w

n VAR w

n VAR w

n VAR w


 


 


 



  
  

 

 

 







    (5) 

Note that to obtain the third line above it is essential to assume that sampling of 

children in each class is with replacement and equal probabilities, so that the independence of 

the terms in the sum warrants using the property that the variance of a sum is equal to the sum 

of the variances of the terms. This assumption is not mentioned by NW, and in practice 

sampling of pupils within classes is never done with replacement. For the data considered by 

NW it is not even a satisfactory approximation, since pupils are sampled without replacement 

and the average sampling fraction would not be far from 8.55 / 20.51 = 41.7 percent – see 

page 13 of NW.  

In addition, the plim result provided in (4) refers to model variances and covariances 

of the variables involved across the whole population. Expression (5) starts by calculating a 

variance due to sampling of pupils within a specific class and school, and therefore, it does 

not reflect a property of the variable across the whole population. Notice that the result 

depends on the specific sample size within each class (ncd) and these are not assumed to be 

constant. 

NW then derive the covariance which appears in the numerator of the first term on the 

right hand side of (4) as: 
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( , ) ,
1 1

1 1
( , )

1 1

1 1
( 1) ( )

1 1

1
( )

1

cd cd

cd cd

jcd kcdj U i k s i
icd icd

cd cd

jcd kcdj U i k s i
cd cd

cd jcd
cd cd

jcd
cd

w w
COV W w COV

N n

COV w w
N n

n VAR w
N n

VAR w
N

   

   

 
 
  
 


 

 
 




 

 
 (6) 

To get the second and third lines of (6) the assumption of independent observations for 

the covariate w within a class is required, but not stated. Once again the result obtained 

depends on the specific population size within a class (Ncd).  

Now recall that to drop the second term in the last line of (4) the following assumption 

was required:  

( , ) 0icd icd icdCOV w W W         (7) 

If this is the case, then it implies that 

( , ) ( , ) ( ) 0

( , ) ( )

icd icd icd icd icd icd

icd icd icd

COV w W W COV w W VAR W

COV w W VAR W

   

 

  (8) 

Therefore we have a contradiction between (6) and (8). This means that either we 

adopt the additional hypothesis required to drop the second term on the last line of (4), in 

which case the derivation of (6) leads to contradictory results, or if we do not adopt this 

additional hypothesis, we cannot drop this term from (4). In either case, the consequence is 

that the simple adjustment factor derived does not follow. 

From expressions (5) and (6) NW obtain: 

1, 1
1ˆplim
1

cd
OLS

cd

n

N
 





  

which looks odd, because the probability limit for the OLS estimator for 1  depends on the 

size of class and the sample size for a specified class c in school d. This result is not 

reasonable, since the size of the atennuation bias should not depend on how large the 

sampling fraction is within a sincle class or school. NW hint at the problem when they move 
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from this expression to one where the OLS estimator is adjusted by the average values of the 

class population and sample sizes, namely: 

1, 1,
1ˆ ˆ
1

cd
adj OLS

cd

N

n
 





 

NW saw that the adjustment should not depend on a single class, but did not recognize that 

their probability limit suffered from this problem. 

Hence our conclusion is that the simple adjustment proposed by Neidell and 

Waldfogel (2008) for the measurement error induced by sampling of peers is not properly 

justified and should not be used ‘as is’. 
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